

TECHNISCHES DATENBLATT

Artikel Nr. 8267

R2A Agar Ph. Eur.

SYNONYME

_

SPEZIFIKATION

Festes Medium für die Zählung von heterotrophen Mikroorganismen in Wasserproben, gemäß Pharmakopöe-Methoden.

FORMULIERUNG* IN G/L

Proteose Pepton	0,500
Caseinhydrolysat (Trypton)	0,500
Hefeextrakt	0,500
D(+)-Glucose	0,500
Stärke	0,500
Natriumpyruvat	0,300
Dikaliumhydrogenphosphat	0,300
Magnesiumsulfat (wasserfrei)	0,024
Agar	15,000

Finaler pH 7,2 ±0,2 bei 25 °C

HERSTELLUNG

18,1 g des Pulvers in 1 I destilliertem Wasser suspendieren und zum Kochen bringen. In geeignete Gefäße verteilen und 15 Minuten bei 121 °C autoklavieren.

BESCHREIBUNG

R2A Agar wurde 1979 von Reasoner und Geldenreich vorgeschlagen und einige Jahre später von der APHA als alternatives Medium für die Zählung von gestressten Zellen in behandeltem Trinkwasser akzeptiert. Die Verwendung von nährstoffreichen Medien wie PCA oder TSA ermöglicht das Wachstum der meisten Mikroben, erlaubt jedoch nicht die Erholung von gestressten oder chlorresistenten Organismen. Bei Verwendung

^{*}Eingestellt und/ oder supplementiert um die Leistungskriterien zu erfüllen.

eines nährstoffarmen Mediums wie R2A, in Kombination mit niedrigeren Temperaturen und längeren Inkubationszeiten, ist es möglich, die Wiederherstellung dieser geschädigten Zellen zu induzieren.

In R2A-Agar ist Pepton die Stickstoffquelle, Hefeextrakt liefert Vitamine und Wachstumsfaktoren. Die Kohlenstoffquelle ist Dextrose und Magnesiumsulfat und Kaliumphosphat erhalten den osmotischen Druck. Die Stärke ist ein Entgiftungsmittel und Natriumpyruvat erhöht die Erholung von gestressten Zellen. Der Agar wirkt als Geliermittel.

TECHNIK

Die Wasserprobe muss so schnell wie möglich verarbeitet werden. Wenn es nicht möglich ist diese innerhalb der ersten 6 Stunden zu verarbeiten, muss die Probe gekühlt werden (jedoch nicht länger als 30 Stunden). R2A Agar kann für Gussplatten, Ausstrichplatten oder Filtration verwendet werden. Das Plattengussverfahren kann die Rückgewinnungskapazität des Mediums, aufgrund des thermischen Schocks beim Mischen von geschmolzenem Agar mit der Probe, beeinflussen.

Bei Inkubation bei 35 °C wird eine Inkubationszeit von 3-5 Tagen empfohlen. In den meisten Fällen ist eine Inkubationstemperatur von 20-28 °C für 5-7 Tage effektiver. Die Platten müssen vor Austrocknung geschützt werden.

QUALITÄTSKONTROLLE

Inkubationstemperatur: 30-35 °C/ 20-28 °C
Inkubationszeit: 48-72 h/ 5-7 d

• Inokulum: Sollbereich 50-100 KBE (Produktivität), gemäß Ph. Eur. und ISO 11133:2014.

Membranfilter-Methode.

Mikroorganismus	Wachstum	Bemerkung
Bacillus subtilis ATCC® 6633	Produktivität >0,70	Keine
Staphylococcus aureus ATCC® 6538	Produktivität >0,70	Keine
Pseudomonas aeruginosa ATCC® 9027	Produktivität >0,70	Keine
Escherichia coli ATCC® 25922	Produktivität >0,70	Keine
Salmonella abony NCTC® 6017	Produktivität >0,70	Keine
Candida albicans ATCC® 10231	Produktivität >0,70	Keine
Aspergillus brasiliensis ATCC® 16404	Produktivität >0,70	Keine

REFERENZEN

- ATLAS, R.M. (1995) Handbook of Media for Environmental Microbiology. CRC Press. Boca Raton. Fla. USA.
- CLESCERI, L.S., A.E. GREENBERG and A.D. EATON (1998) Standard Methods for the Examination of Water and Wastewater. 20th ed. APHA Washington D.C. USA.

- EATON, A.D., A.E. GREENBERG and L.S. CLESCERI (1995). Standard Methods for the Examination of Water and Wastewater. 19th ed. APHA Washington D.C. USA.
- EUROPEAN PHARMACOPOEIA. 6th ed. Suppl 6.3 (2009) General Monographs. Water for injections. (pg. 4339) EDQM. Council of Europe. Strasbourg.
- GREENBERG, A.E., R.R. TRUSSELL and L.S. CLESCERI (1985). Standard Methods for the Examination of Water and Wastewater. 16th ed. APHA-AWWA-WPCF. Washington D.C. USA.
- REASONER, D.J. and E.E. GELDREICH (1979) A new Medium for the enumeration and subculture of bacteria from potable water. Abstracts of Annual Meeting. ASM 79th Meeting. Paper #N7.
- ISO 11133:2014. Microbiology of food, animal feed and water. Preparation, production, storage and performance testing of culture media.
- Van SOETSBERGER, A.A. and C.H. LEE (1969) Pour plates or streak plates? Appl. Microbiol. 18:1092 -1094.

LAGERUNG

Dicht verschlossen, lichtgeschützt, an einem trockenen Ort (4-30 °C).

HALTBARKEIT

Mindestens 4 Jahre ab Produktionsdatum.